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A B S T R A C T

High thermal conductivity, structural stability, good mechanical and anti-oxidant properties
makes hexagonal boron nitride (h-BN) a promising functional filler for polymers to produce
composite materials where excellent thermal management is required, such as in electronic de-
vices. Theoretical studies have revealed that two dimensional (2D) BN has higher thermal con-
ductivity (up to 400 Wm−1 K−1, in-plane) than bulk h-BN due to a reduction in phonon-phonon
scattering when scaling down the thickness of the material. For this reason, 2D boron nitride
nanosheets (BNNS) are gaining intense interest since they could be utilised in the design of
composite materials with excellent efficiency to dissipate heat. Various methods have been ex-
plored to produce 2D BNNS including mechanical and chemical exfoliation of pristine bulk BN,
chemical reaction, chemical vapour deposition (CVD) and electron irradiation. To facilitate the
dispersion of BNNS in polymers, different functionalization strategies have been applied for
surface-treatment of BNNS. In this review, the different synthesis approaches adopted for BNNS
are compared and the effects of BNNS dispersion on the thermal conduction of polymers are
discussed. The factors influencing the mechanism of thermal conduction such as materials
crystallinity, filler geometry, filler surface functionalization and alignment, filler/matrix inter-
face and processing conditions are discussed. Some perspectives and future directions on how to
generate high thermally conductive composites of BNNS and polymer are proposed.

1. Introduction

There continues to be growing interest in the study of boron nitride (BN) as a functional filler for polymers due to its extraordinary
properties including high thermal conductivity, structural stability, mechanical properties and anti-oxidation ability [1–15]. BN is a
refractory chemical compound, produced synthetically since it is not found in nature. It consists of equal number of boron (B) and
nitrogen (N) atoms and is isoelectronic to similar carbon structures. BN exists in various crystalline forms: the hexagonal form (h-BN)
is analogous to graphite, the cubic form (c-BN) is isostructural to diamond and the amorphous form (a-BN) is similar to amorphous
carbon.

h-BN and graphite are similar in structure since both present layered sp2-bonded hexagonally packed sheets. However, in graphite
the valence electrons are set in a conjugated system that makes it an electron conductor, while in BN the presence of two atoms with
very different electronegativity (boron= 2.04, nitrogen=3.04) gives it partial ionic character, conferring to BN electron insulating
properties [2,16]. This structural difference is also reflected in the optical properties of 2D materials, in that, BN is transparent or
white if in bulk quantities [17–22] while graphite is black. Moreover, the arrangement of the layers in the two materials is different,
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in BN the sheets are in “registry” with the atoms of each layer eclipsed by the atoms of the upper and lower layers, while in graphite
the layers are stacked according to a Bernal sequence (AB) [23]. Fig. 1 shows the difference between h-BN and graphite layer
arrangement and Table 1 lists the main properties of BN and graphite. Experimentally, the thermal conductivity of graphene has been
reported to be as high 5000 Wm/K, depending on the method employed and, theoretically using molecular dynamics to be as high as
10,000 Wm/K [24–26].

h-BN can be exfoliated and shaped in different nanostructures such as 2D BN nanosheets (BNNS) [18,28–31] and BN spherical
nanoparticles (BNNP) [32,33]. It is also possible to synthetize BN nanotubes (BNNT) from h-BN [34–38] by air plasma treatment or
chemical vapour deposition (CVD). BN nanostructures may be used as fillers to produce white or transparent [39] highly thermally
conductive and electrically insulating polymer composites. However, the high BNNT surface tension (26.7 mN/m) and the high
interfacial thermal resistance between the nanotubes and the matrix [40–43] make it more difficult to adhere to the polymer matrix
[44–46] compared to BNNS.

This review is focused on the thermal conductivity of BN in both sheet and flake form, the former having a 2D nanostructure and
the latter having at least one dimension on the nanoscale and, when either are a functional filler for polymeric materials. In parti-
cular, the synthesis and properties of BNNS are described, with focus on the intrinsic thermal conductivity of BNNS and the trans-
lation of this property to polymers.

2. Synthesis and characterization of BN

2.1. Mechanical exfoliation

BNNS were first obtained by mechanical exfoliation or cleavage, a technique developed in 2004 [47]. It relies on the use of an
adhesive tape to peel off BN layers which are successively attached onto a substrate such as Si/SiO2. The layers obtained can be easily
viewed under the optical microscope. Unfortunately, this procedure does not allow a few BN layers to be harvested, because of the
strong lip-lip interactions between BN planes that stabilize the multi-layered structure [48,49]. BN nanosheets with thickness be-
tween 3.5 and 80 nm have been obtained [48]. Additional shearing treatment may help break the Van der Waals interactions among
the BN layers. A ball milling process was firstly applied to BN by Li et al. in 2011 [50]. In order to reduce the impact and associated
attrition of the balls and contamination, a milling agent has to be used (e.g. benzyl benzoate, C14H12O2). Fig. 2 shows the SEM images
of the nanosheets obtained using this technique and a schematic illustrating the action of the ball on the BNNS.

Fig. 1. h-BN (a) and graphite (c) layer structural models. h-BN layers are perfectly overlapped (AA′ stacking) and it is not possible distinguish a top
layer from one underneath (b). Graphite layers present a Bernal structure (AB stacking) and it is possible to distinguish the upper layer from a layer
below (d). Reprinted from [23] with permission of The Royal Society of Chemistry.

Table 1
Comparison of properties between hexagonal boron nitride and graphite [27]. Reprinted from J. Mat. Sci. Technol., 31, Jiang
XF, Weng QH, Wang XB, Li X, Zhang J, Golberg D, et al. Recent Progress on Fabrications and Applications of Boron Nitride
Nanomaterials: A Review, 589–98, Copyright (2015), with permission from Elsevier.

Properties h-BN h-graphite

Bond length (nm) 0.144 0.142
Bond energy (eV) 4 3.7
Interlayer spacing, by diffraction (nm) 0.333 0.335
Young’s modulus (TPa) 0.81–1.3 1.1
In-Plane thermal conductivity (W/mK) 400 2600
Charge transferred between neighbors (e) ∼0.4 ∼0
Band gap (eV) 5.5–6.0 ∼0
Breakdown voltage (MV/cm) ∼7 Conductor
Oxidation resistance (°C) ∼840 ∼600
Appearance color White/near-transparent Black
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2.2. Chemical exfoliation (Sonication)

Han et al. [29] first prepared mono-and-few layered BNNS by means of sonication of an organic dispersion containing h-BN
crystals. Different organic solvents such as N,N-dimethylformamide (DMF), chloroform, 1,2-dichloroethane and methanesulfonic acid
(MSA) [23] have been used. The combination of sonication and strong interactions between the solvent and BN surfaces permits
exfoliation of the layers. The use of hydroxides like sodium hydroxide (NaOH) and potassium hydroxide (KOH) may assist layer
separation. The adsorption of cations (Na+ or K+) on the outer BN surfaces leads to curling of the surfaces that allows the anions
(OH−) to penetrate between the layers, causing further curling of the layers and finally, adsorption and reaction between BN and
anions induces the layers to be peeled away from each other [23]. Sonication allows for sheets with thickness between 2 and 10 nm to
be collected [23,49]. The chemical exfoliation process is shown schematically in Fig. 3.

2.3. Wet chemical reaction

BNNS can also be synthesised through the reaction of [51] boric acid (H3BO3) and urea (CO(NH2)2) at 900 °C under a nitrogen
flux [48]. The reactions involved are:

→ +H BO B O H O2 33 3 2 3 2

→ +CO NH NH HNCO( ) )2 2 3

+ → +B O NH BN H O2 2 32 3 3 2

The number of layers can be adjusted by the reaction concentration [2]. For example, the layer thickness reduces with increasing urea
concentration.

BNNS were also produced via a template-free solid phase reaction, where NaBF4, NH4Cl and NaN3 powders were pressed into
pellets at room temperature and reacted in an autoclave at 300 °C for 20 h according to the following reaction. BNNS flakes were
obtained by further solution sonication [52].

+ + → + + + + +NaBF NH Cl NaN BN NaF NaCl N NH HF3 3 3 4 3 34 4 3 2 3

Chemical blowing reactions of NH3BH3 involves heating at atmospheric pressure from 80 °C to 110 °C to initiate dehydrogenation and
to 400 °C to complete dehydrogenation. In this step, hydrogen was evolved from the BeNeH swollen system and the desired BN
product obtained by further heating at 1400 °C for 3 h. In a final step, a BN suspension was obtained via a combination of ultra-
sonication and centrifugation. The final product has a few layered structure with lateral dimensions of about 100 µm [53,54].

In another approach combustion-annealing processes can be used. By way of example, a viscous gel consisting of H3BO3, CH4N2O,
NaN3 and NH4Cl in water was ignited at 600 °C in a muffle furnace. The resulting product was washed with water first and then with

Fig. 2. SEM images of BNNS obtained by ball milling (a) and (c) the mechanism of action of the balls during milling (d) and (e). Reprinted from [23]
with permission of The Royal Society of Chemistry.

Fig. 3. Schematic representation of BN chemical exfoliation where NaOH molecules first cause curling of the sheets, starting from the edges, then
ion penetration among the layers causes exfoliation and the formation of BNNS.
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ethyl alcohol, dried in a vacuum and annealed at 1000–1400 °C under nitrogen. With this procedure, it is possible to obtain BN
nanoplatelets with a thickness of about 30 nm and lateral sizes of a few hundred nm [55]. BNNS with an average thickness of
approximately 4 nm can be prepared from B2O3, Zn, N2H4·2HCl in an autoclave at 500 °C for 12 h then treated with HCl, filtered and
dried at 80 °C [56].

A further wet chemistry methodology is via the use of a substitution reaction. A graphite crucible is filled with B2O3 powder and
covered by molybdenum oxide ((MoO3) as reaction promoter) and graphene sheets. The reaction is performed at 1650 °C for 30 mins
under a nitrogen flux. The product must be taken from the graphene substrate and heated in air at 650 °C for 30 mins in order to
remove the graphene residue. The principle of this technique relies on the substitution of an atom (or functional group) in a com-
pound with another atom (group) [57].

2.4. Chemical vapour deposition (CVD)

BNNS can be synthesized by chemical vapour deposition (CVD) techniques starting from different precursors such as BF3-NH3,
BCl3-NH3, borazine (B3N3H6), trichloroborazine (B3N3H6) or hexachloroborazine (B3N3Cl6) [58–66]. Borazine and its compounds are
easier to use compared to BF3-NH3 and BCl3-NH3 since these precursors evolve two or more gases. Borazine (B3N3H6) is a compound
similar to benzene except the atoms are boron and nitrogen in equal ratio and therefore the two parent atoms of the final products are
present in only one precursor. Thus, it is possible to avoid having to use more complicated systems using two or more gaseous
precursors.

Using a transition metal such as Pt(1 1 1), Ru(0 0 1), Ni(1 1 1), Cu(1 1 1), Pd(1 1 1), Pd(1 1 0), Fe(1 1 0), Mo(1 1 0), Cr(1 1 0), Rh
(1 1 1) [67–78], at high temperature (1000 K) it is possible to synthetize a h-BN monolayer by dehydrogenation of borazine. The
product morphology may change according to the different metal used since the interfacial bonding between h-BN and the substrate
are different [65]. For example, using Rh(1 1 1) a particular structure called BN nanomesh is formed [67], consisting of a single
corrugated layer.

In low-pressure CVD it is possible to use gases produced from BH3-NH3 on Cu to obtain h-BN monolayer by nucleation of BN
triangle shape islands on the substrate. In fact, at 70–90 °C these little islands grow and merge with each other to form a complete
layer on the metal. Low precursor pressure is essential to achieve high quality 2D BN [79]. In 2010 a few layered BN film (about 2–5
layers) was synthetized on Cu by thermal catalytic CVD [20]. A split tube furnace was used to place the substrate at 600 °C for 20
mins under Ar-H2 flux. Successively BH3-NH3 was sublimated at 120–130 °C and carried in the furnace by the Ar-H2 flux. Large and
flat BNNS were obtained if BN and Cu have similar lattice structures.

2.5. Electron irradiation

Jin et al. [80] and Meyer et al. [81] in 2009 first fabricated single layered BNNS by electron irradiation. BN flakes of around 10
layers were firstly mechanically exfoliated then further ‘thinned’ by intensive electron beam irradiation down to a single layer. This
method was first used inside a TEM instrument to obtain BN monolayer.

3. Thermal conductivity of BNNS

Table 2 lists the properties of BNNS, including the thermal conductivity of BNNS which has been theoretically and experimentally
calculated to be in the range of 300–2000W/mK and 300–360W/mK, respectively.

Table 2
Main properties of BNNS.

Characterisation Properties References

Colour Transparent/White [82]
Bonding Covalent/ionic [82]
Electronic structure 5.0–6.0 eV band gap [82]
Raman 1365–1373 cm−1 [20,83,84]
IR 1370–1378 cm−1 in plane BeN stretching;

800–830 cm−1 out of plane BeNeB bending
[84–87]

UV Sharp peak at 203 nm;
transparent in the range of 250–900 nm

[20]

XPS BxN: 190 BE/eV (B1s); BNx 398 BE/eV (N1s) [20,85,88]
XRD Peak at 2θ = 26; lattice parameters: a= 0.250 nm, c=0.666 nm; interlayer spacing:0.333 nm [83,85–87]
Mechanical properties Elastic Modulus:220–510 Nm−2

(thickness about 1–2 nm)
[82]

Thermal conductivity @ RT 300–2000W/mK (theoretical),
300–360W/mK (experimental)

[82,89]

Thermal stability > 600 °C [82]
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3.1. Concept of thermal conductivity

The transfer of the vibrational energy of a particle to an adjacent particle without changing the centre of the mass is thermal
conduction. In general, thermal conduction is due to two contributions [90], energized electron motion and phonon conduction,
where a phonon is a quantum of vibrational energy. In a metal the former has a major contribution, while in a periodic and elastic
system, thermal conduction can be exclusively described in terms of phonons. This property is greatly influenced by material type
(i.e. plastics, metals, ceramic), size, binding energy, and morphology (i.e. crystalline structure, atomic density in the network) [90].
The particles on the surface of the material start to vibrate when exposed to a heat source. Subsequently, the heat is transferred to
adjacent particles through vibration and, ultimately, through particle vibration throughout the whole material [90].

Thermal conductivity, κ (W/mK) quantifies thermal conduction. When a temperature difference ΔT between two opposite faces of
a material is imposed thermal conductivity describes the quantity of heat transferred through a certain thickness of material and
along the direction perpendicular to the surface area in a certain time. Thermal conductivity can be determined from [90]:

=κ α Cp ρ· · (1)

where κ is thermal conductivity, Cp is the specific heat at constant pressure, ρ is density and ɑ is thermal diffusivity. It is a measure of
the speed of heat transfer (length2/time). The thermal conductivity (hence thermal conduction) of a material is an intrinsic property
of material composition. In Eq. (1), if Cp and ρ are constant, then thermal conductivity is constant. If Cp and ρ of the material change
as a function of temperature, then thermal conductivity changes. Additionally, for an isotropic material heat diffuses uniformly
whatever the direction, while for an anisotropic material, thermal conductivity depends also on the direction of heat flux. Therefore,
thermal conductivity is properly described by a tensor and it is a function of direction and temperature [88]:

=
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The more correct equation for thermal conductivity is therefore:
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A numerical model is needed to obtain a solution to Eq. (3) [91–93].

3.2. Thermal conductivity in crystalline materials and polymers

In a crystalline material such as BN, graphene, metals, any discontinuity (i.e. dislocations, point defects, grain boundaries and
interfaces) causes a reduction in thermal conductivity, known as Kapitza resistance [94]. Indeed, in a crystalline material the heat
propagates through the material as a harmonic wave where all the particles oscillate in the same way at the same frequency.
Discontinuity points result in heterogeneity in the structure and particles vibrate differently at different frequencies. This anhar-
monicity leads to a phonon scattering phenomena, causing a reduction of thermal conductivity. The phonon scattering means that the
phonons are not transferred as a unique wave anymore and it may happen in different ways [95]: (i) phonon-phonon scattering: in an
ideal case, atoms harmonically vibrate during heat flux. However, atoms vibrate at different frequencies and phonons flip their
direction causing scattering; (ii) phonon-interface scattering: this type of scattering is due to the presence of interfaces in a material. It
is inevitable since all the materials have finite dimensions, namely interfaces and disconnections and, (iii) phonon-defect scattering:
this type of scattering occurs when defects are present in the material. Any defect is a barrier to heat flux and results in phonon
scattering.

For semi-crystalline polymers, the amorphous phase behaves as structural defects that diffuse heat slowly. Even highly crystalline
polymers still contain intrinsic defects (e.g. chain ends, chain folding), the heat propagation in crystals and polymeric materials can
be described by the Newton pendulum model, as shown in Fig. 4.

Fig. 4. Newton pendulum model: (a) perfect crystalline material behaviour to heat propagation; (b) polymer behaviour to heat propagation [90].
Reprinted from Prog Polym Sci, 61, Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D, Review of thermal conductivity in composites:
mechanisms, parameters and theory, 1–28, Copyright (2016), with permission from Elsevier.
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As shown in Fig. 4a, a crystalline material is a perfect Newton system where the ordered structure (shown as spheres) facilitates
the heat to pass from a particle face to another very quickly without any loss of energy. Conversely, in Fig. 4b, the heat travels
through defects in polymers such as the amorphous component and the vibration of the entire chains, causing a disordered oscillation
leading to a loss of energy from one particle to another, therefore, most polymers are highly thermally insulating, with κ values in the
range 0.2–0.4 Wm−1 K−1.

Agari et al. [96] proposed a mathematical model to describe thermal conductivity of polymer composites:

= +logκ A V B· (4)

where κ is the thermal conductivity of the composite and V is filler content by volume. The A term is related to the limiting effect of
thermal conductivity of the polymer on the thermal conductivity of the filler. The B term takes into account the eventual changes in
polymer crystallinity upon filler incorporation. The two terms are expressed by Eqs. (5) and (6).

=A C κ
Cp κ

·log[
·

]f
2

1 (5)

=B Cp κlog( · )1 (6)

where κ1 and κ2 are the thermal conductivity of the polymer matrix and filler respectively. The ease at which a connecting conductive
filler path is formed can be expressed by the Cf (> 0) factor and Cp is the specific heat capacity of the polymer. The ratio κ2/κ1 in Eq.
(5) is defined as the “reduced thermal conductivity of the filler” and indicates how much the thermal conductivity of the filler in the
composite is lower than the thermal conductivity of the pure filler. This means that it is not possible for a polymer based composite to
have the same ability to dissipate heat of the embedded filler because the polymer acts as a limiting barrier to heat flow [96].

3.3. Thermal conductivity of composites with BN as an additive (filler)

The addition of highly thermally conductive fillers to polymers can improve the thermal conduction of the polymer matrix,
including carbon- [97–104], metallic [105–108] and ceramic fillers [109–113]. Among which h-BN with thermal conductivity up to
400W/mK at room temperature is extremely promising. Theoretical studies suggest that even higher thermal conductivity may be
reached if a reduction in phonon-phonon scattering in the 2D layers can be overcome [23]. In fact, the interlayer coupling facilitates
out-of-plane vibration and hence phonon scattering. The thermal conductivity decreases from a monolayer to a multilayer structure
up to converge to bulk h-BN thermal conductivity when a few layer system is simulated [114]. It is worth noting that the exceptional
electrical insulation and thermal conductivity properties of BN make it a highly interesting material for battery applications.

3.3.1. Effect of filler geometry on thermal conductivity
Filler geometry such as lateral dimensions, sheet/layer thickness and aspect ratio all determine the thermal conductivity of BN. In

fact, smaller filler particles cause more phonon scattering than larger ones due to the higher density of interfaces. This leads to a
reduction of the thermal conductivity [115,116]. Michael Shtein et al. [115] managed to enhance the thermal conductivity of
composites of epoxy resins and GNP by adding filler particles having a lateral size of around 20 µm, a thickness of around 10 nm and
an aspect ratio of around 1000. The final thermal conductivity was almost four times higher than the pure matrix.

Several workers reported that it is possible to enhance the thermal conductivity of polymers by adding BNNS on the micrometre
length scale [117,118]. By way of example, Hatsuo Ishida et al. [117] increased the thermal conductivity of polybenzoaxine up to 30
times higher than the pure matrix, by adding BNNS having a lateral sizes of 225 µm for a loading of 78.5 vol%. Surprisingly, the effect
of BNNS geometry on κ has been poorly investigated.

3.3.2. Effect of processing parameters on thermal conductivity
Composites produced by different processes may present different characteristics. Moreover, according to the procedure adopted,

defects can be created both on the micro-scale, such as voids and, on the macro-scale such as porosity. Additionally, higher filler
loading generally results in increased viscosity in the melt state which can be detrimental since the higher the viscosity, the larger the
porosity of the final material [23]. To date, the main processes used for production of composites of polymers and BNNS are
sonication [1,2,119,120], ball-milling [121–123], pressing [117,124,125] and mixing [5,126–129]. Each method directly impacts
the state of filler dispersion and distribution in the polymer matrix, an important parameter in attaining a composite material with
enhanced thermal conductivity.

3.3.3. Effect of BNNS dispersion on thermal conductivity
Achieving effective dispersion of the filler in the polymer matrix is a non-trivial task, since the filler particles, especially on the

nanoscale tend to agglomerate due to their high surface energy [130]. Mackay et al. reported that a stable dispersion of molten
polymer and nanoparticles forms when the polymer radius of gyration is larger than the nanoparticle radius. For example, in a system
made of polystyrene nanoparticles in polystyrene the miscibility occurs when the polystyrene radius of gyration is 1–4 times larger
than the nanoparticle radius [131]. It is important to note that the extent of dispersion is not so influential on composite properties at
lower filler concentration but it affects composite performance at high filler loadings [132–134]. This may be due to the segregation
of the filler in the polymer for very low concentrations [135]. It is also essential to underline that thermal conductivity is more
influenced by the interactions between filler particles in the matrix rather than filler content (number of filler particles) [136]. In fact,
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a three dimensional thermal network is produced when the level of particle interactions is high, reducing interfacial thermal re-
sistance (ITR) but improving thermal conductivity [136]. Previous studies pointed to the existence of different dispersion states for a
2D platelet like filler in a polymer matrix [137–139], namely separated, intercalated and exfoliated, depending on the technique used
to prepare the composites and the affinity between matrix and filler [137,139]. Usually low miscibility and exfoliation leads to the
formation of a separated phase consisting of a structure of very large agglomerates of filler. The intercalated phase still presents a
stacked structure but with major interlayer spacing (few nm) than the separated one. Finally, in the exfoliated configuration the filler
is well dispersed in the polymer and the sheets have the largest surface area and hence aspect ratio.

Effective dispersion is a fundamental requirement to achieve improved thermal conductivity of a polymer matrix on addition of
BN since an interconnected touching network of BN particles is required so as to create an optimal thermal path through the matrix
via particle-particle connectivity [135]. It is important to highlight that higher thermal conductivity is not always obtained by high
levels of dispersion. Indeed, the higher the level of dispersion, the more interfaces are created in the system, acting as Kapitza
resistance. On the other hand, isolated filler agglomerates are not efficient thermal conductors as a dispersed system at low filler
concentration. Presumably, in some cases the interfaces depending on the extent of the dispersion are less detrimental than the large
mean inter-particle distances [90]. It is clear the importance of the filler-polymer interface in determining the thermal conductivity of
a composite material.

3.3.4. Effect of filler-polymer interface compatibility on thermal conductivity and functionalization methods of BNNS
Filler-polymer compatibility impacts on all composite properties which in turn is determined by chemical composition, filler

concentration and geometry of the particle (shape and size) and in some instances filler alignment [139,140].
Naskar et al. [141] stated that in order to improve the properties of composites it is essential to create a continuous phase where

the polymer is immobilized on the nanoparticle surfaces. For example, they report that a continuous phase on the micrometre-scale
can be reached when both graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) are added to epoxy resin, improving me-
chanical properties. This is due to an enhancement of polymer/filler adhesion by adding an inclusive material (graphene in this case)
that reduces the distance between the polymer and the filler, in effect the interface. Fig. 5 shows the difference between a dis-
continuous and a continuous phase.

By reducing the interface between polymer and filler it is also possible to improve the thermal conductivity of composites. Large
interfaces, in fact, cause phonon scattering [42,142]. Furthermore, the larger the interface region the longer the time for heat
dissipation. Therefore, a perfect compatibility has to be reached between filler and matrix in order to reduce the size of the interface
and hence phonon scattering. Besides small particle inclusion in the composite as mentioned above, filler surface functionalization is
a further methodology utilised to improve filler compatibility with the matrix to achieve high levels of dispersion.

The most common method adopted when functionalizing BNNS is via covalent functionalization, which relies on a chemical
reaction with a particular functional group. Hydroxide compounds are used to enhance the mechanical exfoliation of BNNS and also
used to functionalize BN, as well as the reaction with other inorganic substances such as acids or peroxides [40,120,143–145].
Organic compounds such as stearic acid derivatives [121], organic acids [110,140,146], isocyanate [147], phenyletilamine [148],
alcohols [149], silane derivatives [16,125,150–155] and polysilazane [156] are also alternatives to inorganic acids. Some authors
reported ad hoc structures synthetized in order to functionalize BN [157] but, usually these structures are amphiphilic compounds
having therefore a group that is compatible with the filler and another group compatible with the matrix. In this way, the structure

Fig. 5. On the left: filler particles do not adhere onto polymer chain. This increases the polymer/filler interface, which results into a discontinuous
phase. On the right: by adding inclusive particle, it is possible to immobilize the polymer chain onto the filler particles. This reduces the polymer/
filler interface, which results into a continuous phase by creating a 3D network.
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links filler and matrix together.
Silane derivatives are the most used. However, BN is not reactive with silane-based agents. In fact, silane compounds are quite

reactive toward hydroxyl groups that are not present in boron nitride [150,158–160] unless in very small quantities depending on the
procedure adopted to exfoliate the pristine filler. For this reason, some experiments report a previous BN treatment with a hydroxide
and then the filler is further functionalized with a silane compounds such as dimethylsiloxane and 3-ammino-propyl-3-ethoxy-sylane
[16,151,152].

Another approach is via a low oxidation route [161] where BNNS at high temperatures in presence of air promotes the in-
troduction of oxygen groups onto the BNNS surface. A similar procedure uses an organic peroxide to facilitate the oxygen radical
reaction. The hydroxyl groups formed after reaction with the peroxide are removed by way of hydrolysis [162].

Air plasma treatment is a promising functionalization method since it doesn’t involve chemicals, it is relatively simple and allows
control of BN wettability and hence adhesion properties [163]. This technique relies on the use of an air flow, made of essentially
nitrogen, oxygen and water vapour, undertaking a heating process at high temperatures. This allows oxygen to react with water
vapour forming ions such as [H+], [O2−], and [OH−] which are very reactive and attack the BN surface. The process starts from BN
sheet edges since they are more reactive due to the presence of dandling bonds and followed by reactions inside the BN structure,
where defects like vacancies are usually present [163]. The mechanism is very complex and involves different processes such as Lewis
acid-base reactions where hydroxyl groups act as acid while boron acts as base. Moreover, the ions may also attack the BeN bond
forming new chemical links. The functionalization introduces OH groups which create a wettability gradient on the BN surface
depending on how much surface is exposed to the treatment [163]. This is a most interesting result since having control over wetting
properties opens up many potential applications in fields such as inkjet printing and surface-directed liquid flow [164–169].

Other workers reported non-covalent functionalization through π-π interactions using compounds containing alkyl amine, alkyl
phosphine, and aromatic groups [18,170-172]. Fig. 6 provides a schematic representation of the main functionalization procedures
reported to modify BNNS.

3.3.5. Effect of filler alignment on thermal conductivity
It is possible by directing filler particles along the same axis in the polymer matrix, to enhance the thermal conductivity of the

composite material. For this purpose, tape cast [40], spin-cast [173], shear alignment [174], use of magnetic [146,175–178] or
electric fields [179] have been employed to align BNNS. Recently, the application of magnetic fields to align BNNS has aroused an
increasing interest since it is possible to control filler particle orientation and direction [180,181]. Fig. 7 shows the alignment of the
filler in the polymer matrix when applying a magnetic field [175]. It can be seen that in an ideal configuration the filler is perfectly
aligned along the direction of the applied magnetic field (a and b), while in the case of random alignment (c) it is not possible to
establish a unique orientation axis:

In order to apply this technique, the filler has to be responsive to the applied magnetic field. Neat BNNS has a low magnetic dipole
and therefore was coated with magnetic nanoparticles such as Ni, Fe, Co [182] and Fe3O4 [175,180]. The drawback of this approach
is related to filler content, if it is too high alignment is hindered by the steric interaction between filler particles [176].

4. BN application as filler in thermoplastic and thermoset based composites

The majority of polymers such as common thermoplastics (e.g. poly(ethylene), poly(propylene), poly(amides)) and thermosets
(e.g. epoxy resins) are insulators and have low thermal conductivity but, as described above, this property can be improved by
addition of an appropriate filler, such as BN. If the application requires both efficient electric insulation and thermal conduction like

Fig. 6. Methodologies adopted for BNNS functionalization.
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in certain electronic applications, BN filled polymers are one solution [183]. Materials scientists are working hard to find an optimal
formulation of BN polymer composite for electronic devices, in order to face the critical challenge of heat dissipation. Normally
thermal conduction is the means through which electric devices dissipate the heat produced during their operation [184,185], but if
the thermal conductivity of the material which the device is made of is not sufficiently high, then heat is not efficiently dissipated,
causing a reduction in the service life of the device.

4.1. Composites of thermoplastic polymers and 2D BN

Composites with thermoplastic polymeric matrices and thermal conductive and (electrically insulating) fillers such as BN are
arousing interest.

There are relatively few publications which focus on the study of the thermal conductivity of composites of thermoplastics filled
with 2D BN and in many instances the BN filler is not well characterised [124,130,135,147,151,156,186–190] therefore, it is quite
difficult to extract the influence of filler (chemical composition, morphology, surface characteristics, shape and size) on thermal
conductivity of the system of interest. In other cases [146,151,157,191], very low thermal conductivity values are reported for the
final composites (< 1W/mK) and the results are seldom deeply discussed. In other instances the heat flux mechanism in the final
composite is analysed just in terms of the thermal diffusivity [149,157,174] and this is not appropriate since, as explained in the
previous sections, thermal conduction is quantified by thermal conductivity and hence thermal diffusivity alone is not informative,
see Eq. (3). Moreover, many publications report just the value obtained for thermal conductivity (κ) of the composite of interest and
seldom account for other important factors in determining κ, including polymer crystallinity, composite preparation technique and

Fig. 7. Alignment along magnetic field axis orientation (a and b) with the corresponding cross-sectional and top view FIB-SEM images (d, g, e, and
f). Filler random configuration (c) and corresponding FIB-SEM images (f and i) [175]. Reprinted with permission from Yuan C, Duan B, Li L, Xie B,
Huang M, Luo X. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. ACS Appl Mater
Interfaces. 2015;7:13000–6. Copyright (2015) American Chemical Society.
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cooling regime. Suplicz et al. studied the correlation between change in PP crystallinity and thermal conductivity as a function of BN
loading and highlighted the role of melt processing in determining κ [188]. From DSC studies on injection moulded samples, the
authors observed that the crystallinity of the composites after the first heating was around 6% lower than pure PP. The authors
proposed that the higher thermal conductivity of the composites due to BN inclusion leads to a higher cooling rate in the mould after
injection, i.e. the composites cool down quicker than the pure PP, causing the drop in crystallinity in the composites. Similar
behaviour was obtained by Radhakrishnan et al. for silica-PP based composites [189]. Moreover, these workers also observed an
increase in composite crystallinity relative to unfilled PP for the cooling and the second heating cycle DSC experiments. The authors
asserted that the filler acts as a nucleating agent increasing the crystallinity in the final material. However, this effect is evident at low
cooling rate as that one used for the DSC analysis; conversely, it obscured at high rate of cooling as that one used in the injection
moulding machine. Therefore, having control over the cooling rate when projecting a composite with high thermal conductivity is
crucial to ensure the success of the final material performance. As mentioned above A. Suplicz et al. obtained a composite with a
thermal conductivity of 1.2W/mK. Table 3 shows the highest values reported in literature at the time of writing for the thermal
conductivity of composites prepared from polymers and BN and the corresponding composite preparation technique adopted.

A typical value of thermal conductivity for BN-filled thermoplastic composites is in the range 1 to 5W/mK. The highest values of
thermal conductivity were obtained by Xie et al. [40] (4.5W/mK), Shin et al. [186] (∼ 5W/mK) and Kuang et al. (5.47W/mK). Xie
et al. associated their value for composite thermal conductivity to the alignment of the filler in the matrix by applying a magnetic
field during the processing. Shin et al. assigned their results to the reduction of the thermal resistance at filler/matrix interface with
increasing filler particle size (BNNS lateral size= 20 µm). Kuang et al. [118] proposed that the thermal conductivity obtained was a
consequence of the high levels of orientation of the filler in the matrix achieved via an oscillatory shearing of the composite on a two-
roll mill.

4.2. Composites of thermosetting polymers and 2D BN

Among thermoset polymers, epoxy resins are widely used due to their excellent chemical resistance, adhesion and mechanical
properties [193]. However, epoxy resins have very low thermal conductivity values (0.15–0.35W/mK) [194] which limits their
application in fields where heat dissipation is crucial (e.g. in electronic devices and CFRP tooling).

Researchers have focused on thermoset-based composites filled with BN in order to enhance the thermal conductivity of the
matrix polymer. In some cases, the thermal conductivity is quite low (< 1W/mK) [1,144,145,153,195,196]. Researchers have
achieved higher thermal conductivity values by using different shapes of BN, such as BN particles [125] (10.31W/mK) or BN
aggregates and whiskers [143]. It is evident that the geometry of the filler particle plays an important role in determining the thermal
conductivity of the composite material. However, the shape of the filler is not always reported in the published literature
[116,147,155]. Table 4 lists the highest values reported in literature for the thermal conductivity of composites prepared from
thermosets and BN.

As shown in Table 4, the values for thermal conductivity of epoxy resins filled with BN cover a wide range and are achieved at
high filler content and, in all instances at filler loadings that are not commercially viable. The highest value (100W/mK) was
obtained by Zhu et al. [119]. The authors proposed that this was due to the functionalization of BNNS with hydroxyl groups after
dispersing the filler in isopropyl alcohol. In fact, the presence of hydroxyl groups on BNNS make them chemically compatible with the
structure of the wood derived polymer surface used as the matrix.

Other functionalizing agents have been adopted to make BN compatible with polymer matrixes. Kim et al. studied the en-
hancement of composite thermal conductivity when the BN filler was treated with glycidoxypropyl trimetoxysilane [16], but the
value of κ obtained was a factor of ∼35 less than that reported in [114]. In fact, the hydroxyl groups of the functionalizing agent
improve the interactions between filler and matrix.

It is also interesting to note that Xu et al. [125] who used the same functionalized agent, obtained a value of thermal conductivity
almost four times higher than Kim et al. [16], although both used a laser flash method to determine κ. This discrepancy may be
associated with the more effective composites preparation process utilized by Xu et al. [125].

Wang et al. [198] achieved a value of 3W/mK which was associated with improved interfacial interactions between filler and
matrix by functionalizing BNNS with silver nanoparticles. The authors proposed that the thermal conductivity of the composite was
due to the decreasing thermal resistance between BNNS and matrix by bridging them with silver nanoparticles. Other workers
attained enhanced thermal conductivity through the addition of BN having large particle sizes (225 µm) [117], or by aligning the BN
particles in polymers in the attempt to create a filler network through which the heat can be efficiently dissipated [173,176,177]. By
way of comparison, the thermal conductivity of graphene filled polymers, particularly with epoxy resins has been studied and values
of 14 Wm/K have been recorded when the graphene is part of a hybrid filled system [199–201]. Values as high as 90 Wm/K have
been reported when graphene was laminated on to poly(ethylene terephthalate) substrates [202].

5. Concluding remarks and future perspectives

The extraordinary properties of 2D BN, including high thermal conductivity combined with structural stability, good mechanical
properties and anti-oxidation ability have aroused intense research interest in this material as a functional filler for polymers.
Thermal conduction is a complex process and depends on different parameters correlated to both the filler and matrix employed to
prepare the composite, including morphology, crystallinity, chemical composition, filler functionalization and level of dispersion in
the polymer matrix, filler alignment in the polymer, processing techniques employed to prepare the composite and most importantly
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the filler-matrix interface.
Fillers with high aspect ratio and crystallinity are required to improve thermal conductivity of composite materials and achieve a

reduction in Kapitza resistance. In this sense, BNNS are interesting, as theoretical studies have shown it has a higher thermal con-
ductivity value than bulk h-BN, due to a reduction in phonon scattering of 2D BN. Typical experimental values for thermal con-
ductivity of BNNS are in the range of 300–360W/mK [89].

Chemical compatibility between BNNS and the polymer matrix is key to achieving a composite material with significantly en-
hanced thermal conductivity. The most common routes for chemical functionalization of BNNS have been by using silane agents or
via plasma processes. Furthermore, the BNNS must be highly dispersed with the polymer matrix. However, it should be noted that
high levels of BNNS dispersion does not imply higher composite thermal conductivity since the greater the extent of dispersion, the
higher the interfacial resistance between filler and matrix, leading to a reduction in thermal conductivity. Indeed, even the addition
of the most highly thermally conducting filler does not imply that composite materials will have very high thermal conductivity. This
behaviour is associated with the resistance of the polymer against the heat flux that results in reduced thermal conductivity. In order
to overcome this problem, it is possible to address polymer heat flux by aligning the filler (BNNS) in the matrix in a given direction. In
this way, it is possible to create a filler network where the heat flux is efficiently dissipated.

The processing technique used to prepare the polymer-BNNS composites are also very important as different processes may lead
to defects in the composite and any defect and discontinuity cause a reduction in thermal conductivity.

Moving forward there are at least three key challenges which must be addressed if high thermal conducting composites of
polymers and BNNS are to be fully realised:

(i) BNNS structure and properties: the precursor materials as well as the final BNNS must be fully characterised, in terms of its
chemical composition, morphology, surface chemistry and physical properties.

(ii) BNNS – polymer interface: critical to attaining a high thermal conducting composite is the formation of an interconnecting BNNS
network throughout the polymer matrix. The BNNS must be touching as to minimise interfacial thermal resistance (ITR) and
promote phonon conduction. Different functionalisation strategies are required to knit the BNNS network together within the
polymer matrix without degrading the intrinsic thermal conducting properties of BNNS.

(iii) BNNS dispersion: it must be possible to homogeneously disperse BNNS throughout the polymer matrix using industrially re-
levant processes, e.g. extrusion or compounding with regard thermoplastics and high shear mixing with regard thermosets such
as epoxies.

Irrespective of how well BNNS is dispersed in any polymer matrix, if challenge (ii) is not met, then translation of the outstanding
thermal conductivity of BNNS to polymer matrices will be very limited.
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